Distortion of auditory space during visually induced self-motion in depth
نویسندگان
چکیده
Perception of self-motion is based on the integration of multiple sensory inputs, in particular from the vestibular and visual systems. Our previous study demonstrated that vestibular linear acceleration information distorted auditory space perception (Teramoto et al., 2012). However, it is unclear whether this phenomenon is contingent on vestibular signals or whether it can be caused by inputs from other sensory modalities involved in self-motion perception. Here, we investigated whether visual linear self-motion information can also alter auditory space perception. Large-field visual motion was presented to induce self-motion perception with constant accelerations (Experiment 1) and a constant velocity (Experiment 2) either in a forward or backward direction. During participants' experience of self-motion, a short noise burst was delivered from one of the loudspeakers aligned parallel to the motion direction along a wall to the left of the listener. Participants indicated from which direction the sound was presented, forward or backward, relative to their coronal (i.e., frontal) plane. Results showed that the sound position aligned with the subjective coronal plane (SCP) was significantly displaced in the direction of self-motion, especially in the backward self-motion condition as compared with a no motion condition. These results suggest that self-motion information, irrespective of its origin, is crucial for auditory space perception.
منابع مشابه
Auditory space perception during linearly self-motion
Spatial inputs from the auditory periphery can be changed with listener's various movements relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these moveme...
متن کاملThe transfer of adaptation between actual and simulated rotary stimulation.
It is well known that continued exposure to motion environments leads to adaptation, but it is not clear whether such changes are specific to the particular type of motion experienced. The present investigation sought to evaluate the extent of transfer between real motion and visually-induced apparent motion. In addition, the direction of motion was varied and these two factors, mode of exposur...
متن کاملCompression of Auditory Space during Forward Self-Motion
BACKGROUND Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, abou...
متن کاملSpatialized auditory cues enhance the visually-induced self-motion illusion (circular vection) in Virtual Reality
“Circular vection” refers to the illusion of self-motion induced by rotating visual or auditory stimuli. Visually induced vection can be quite compelling, and the illusion has been investigated extensively for over a century. Rotating auditory cues can also induce vection, but only in about 25-60% of blindfolded participants (Lackner, 1977; Larsson et al., 2004). Furthermore, auditory vection i...
متن کاملInfluence of Auditory Cues on the visually-induced Self-Motion Illusion (Circular Vection) in Virtual Reality
This study investigated whether the visually induced selfmotion illusion (“circular vection”) can be enhanced by adding a matching auditory cue (the sound of a fountain that is also visible in the visual stimulus). Twenty observers viewed rotating photorealistic pictures of a market place projected onto a curved projection screen (FOV: 54 ̊x45 ̊). Three conditions were randomized in a repeated me...
متن کامل